Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3219, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622143

RESUMO

Diverse aerobic bacteria use atmospheric hydrogen (H2) and carbon monoxide (CO) as energy sources to support growth and survival. Such trace gas oxidation is recognised as a globally significant process that serves as the main sink in the biogeochemical H2 cycle and sustains microbial biodiversity in oligotrophic ecosystems. However, it is unclear whether archaea can also use atmospheric H2. Here we show that a thermoacidophilic archaeon, Acidianus brierleyi (Thermoproteota), constitutively consumes H2 and CO to sub-atmospheric levels. Oxidation occurs across a wide range of temperatures (10 to 70 °C) and enhances ATP production during starvation-induced persistence under temperate conditions. The genome of A. brierleyi encodes a canonical CO dehydrogenase and four distinct [NiFe]-hydrogenases, which are differentially produced in response to electron donor and acceptor availability. Another archaeon, Metallosphaera sedula, can also oxidize atmospheric H2. Our results suggest that trace gas oxidation is a common trait of Sulfolobales archaea and may play a role in their survival and niche expansion, including during dispersal through temperate environments.


Assuntos
Acidianus , Archaea , Temperatura , Ecossistema , Oxirredução , Hidrogênio
2.
Appl Environ Microbiol ; 90(2): e0136923, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38236067

RESUMO

The degree of cyclization, or ring index (RI), in archaeal glycerol dibiphytanyl glycerol tetraether (GDGT) lipids was long thought to reflect homeoviscous adaptation to temperature. However, more recent experiments show that other factors (e.g., pH, growth phase, and energy flux) can also affect membrane composition. The main objective of this study was to investigate the effect of carbon and energy metabolism on membrane cyclization. To do so, we cultivated Acidianus sp. DS80, a metabolically flexible and thermoacidophilic archaeon, on different electron donor, acceptor, and carbon source combinations (S0/Fe3+/CO2, H2/Fe3+/CO2, H2/S0/CO2, or H2/S0/glucose). We show that differences in energy and carbon metabolism can result in over a full unit of change in RI in the thermoacidophile Acidianus sp. DS80. The patterns in RI correlated with the normalized electron transfer rate between the electron donor and acceptor and did not always align with thermodynamic predictions of energy yield. In light of this, we discuss other factors that may affect the kinetics of cellular energy metabolism: electron transfer chain (ETC) efficiency, location of ETC reaction components (cytoplasmic vs. extracellular), and the physical state of electron donors and acceptors (gas vs. solid). Furthermore, the assimilation of a more reduced form of carbon during heterotrophy appears to decrease the demand for reducing equivalents during lipid biosynthesis, resulting in lower RI. Together, these results point to the fundamental role of the cellular energy state in dictating GDGT cyclization, with those cells experiencing greater energy limitation synthesizing more cyclized GDGTs.IMPORTANCESome archaea make unique membrane-spanning lipids with different numbers of five- or six-membered rings in the core structure, which modulate membrane fluidity and permeability. Changes in membrane core lipid composition reflect the fundamental adaptation strategies of archaea in response to stress, but multiple environmental and physiological factors may affect the needs for membrane fluidity and permeability. In this study, we tested how Acidianus sp. DS80 changed its core lipid composition when grown with different electron donor/acceptor pairs. We show that changes in energy and carbon metabolisms significantly affected the relative abundance of rings in the core lipids of DS80. These observations highlight the need to better constrain metabolic parameters, in addition to environmental factors, which may influence changes in membrane physiology in Archaea. Such consideration would be particularly important for studying archaeal lipids from habitats that experience frequent environmental fluctuations and/or where metabolically diverse archaea thrive.


Assuntos
Acidianus , Acidianus/metabolismo , Glicerol/metabolismo , Dióxido de Carbono/metabolismo , Lipídeos de Membrana/metabolismo , Archaea/metabolismo , Metabolismo Energético
3.
Microbiologyopen ; 12(3): e1356, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379425

RESUMO

The leucine-responsive regulatory protein (Lrp) family of transcriptional regulators is widespread among prokaryotes and especially well-represented in archaea. It harbors members with diverse functional mechanisms and physiological roles, often linked to the regulation of amino acid metabolism. BarR is an Lrp-type regulator that is conserved in thermoacidophilic Thermoprotei belonging to the order Sulfolobales and is responsive to the non-proteinogenic amino acid ß-alanine. In this work, we unravel molecular mechanisms of the Acidianus hospitalis BarR homolog, Ah-BarR. Using a heterologous reporter gene system in Escherichia coli, we demonstrate that Ah-BarR is a dual-function transcription regulator that is capable of repressing transcription of its own gene and activating transcription of an aminotransferase gene, which is divergently transcribed from a common intergenic region. Atomic force microscopy (AFM) visualization reveals a conformation in which the intergenic region appears wrapped around an octameric Ah-BarR protein. ß-alanine causes small conformational changes without affecting the oligomeric state of the protein, resulting in a relief of regulation while the regulator remains bound to the DNA. This regulatory and ligand response is different from the orthologous regulators in Sulfolobus acidocaldarius and Sulfurisphaera tokodaii, which is possibly explained by a distinct binding site organization and/or by the presence of an additional C-terminal tail in Ah-BarR. By performing site-directed mutagenesis, this tail is shown to be involved in ligand-binding response.


Assuntos
Acidianus , Proteínas de Escherichia coli , Fatores de Transcrição/metabolismo , Acidianus/genética , Acidianus/metabolismo , Alanina/metabolismo , Ligantes , Proteína Reguladora de Resposta a Leucina/genética , Proteína Reguladora de Resposta a Leucina/metabolismo , beta-Alanina , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , DNA Intergênico , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Transcrição Gênica
4.
Chemosphere ; 284: 131403, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34225118

RESUMO

Although Tween-20 was used as an important catalyst to increase chalcopyrite bioleaching rate by acidophiles, the effect of Tween-20 on initial adhesion and biofilm development of acidophiles on chalcopyrite has not been explored until now. Herein, the role of Tween-20 in early attachment behaviors and biofilm development by Acidianus manzaensis strain YN-25 were investigated by adhesion experiments, adhesion force measurement, visualization of biofilm assays and a series of analyses including extended Derjaguin Landau Verwey Overbeek (DLVO) theory, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The bacterial adhesion experiments showed that 2 mg/L of Tween-20 increased the adhesion percentage (by 8%) of A. manzaensis YN-25. Tween-20 could promote the early adhesion of A. manzaensis YN-25 by changing the Lewis acid-base interaction and electrostatic force to increase total interaction energy and adhesion force. Besides, the functional groups on the surface of cells (carboxyl, hydroxyl and amino functional groups) contributed to the adhesion of A. manzaensis YN-25 on chalcopyrite. Furthermore, the promotion of biofilm formation by Tween-20 was mainly attributed to the reduction of S0 passivation layer formation and complexing more Fe3+ on chalcopyrite surface, contributing to the erosion of chalcopyrite and creating more corrosion pits. Live/dead staining showed low live/dead ratio (ranged from 0.35 to 1.32) during the biofilm development process. This report offers a better understanding of the effects of Tween-20 on attachment and biofilm development of acidophilic microorganisms and would lay a theoretical foundation for the better application of catalyst in bioleaching.


Assuntos
Acidianus , Aderência Bacteriana , Biofilmes , Cobre , Polissorbatos
5.
Chemosphere ; 276: 130208, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33744647

RESUMO

Silver ion (Ag+) is an important catalyst to improve chalcopyrite bio-dissolution, but its effects on initial adhesion behaviors and biofilm formation of acidophiles onto metal sulfide were still unknown. In this study, initial attachment behavior and adhesion force in the presence of Ag+ (0, 1, 2, 5, 10 and 20 mg/L) were comparatively analyzed for Acidianus manzaensis YN-25. Biofilm was observed by fluorescent images in the presence of 0, 1 and 2 mg/L Ag+. X-ray photoelectron spectroscopy (XPS) corroborated the catalytic mechanisms of Ag+ to biofilm formation. Results showed that Ag+ could significantly promote the attachment of cells on chalcopyrite, and the optimum concentration of Ag+ was 2 mg/L with the biggest percentage of attached cells (74%), followed by 5 mg/L (71%), whereas that for the control (0 mg/L) was only 61%. Ag+ significantly increased the interaction force between A. manzaensis YN-25 and chalcopyrite. Compared with the control, larger coverage of biofilm (up to 40% versus 32%) and more corrosion pits were observed on chalcopyrite in the presence of 2 mg/L Ag+. Moreover, Ag+ catalyzed chalcopyrite corrosion and accelerated biofilm formation by producing a loose porous Ag2S layer and Ag0 to decrease the resistivity. The live/dead ratio was small with a range of 0.31-1.38, suggesting that dead cells were a great slice during the whole life-cycle of biofilm on chalcopyrite. This report offers a profound insight into the promotion mechanism of Ag+ on adhesion behaviors and biofilm formation by thermoacidophilic archaeon under extremely acidic conditions.


Assuntos
Acidianus , Archaea , Biofilmes , Cobre , Prata
6.
PLoS One ; 16(1): e0244547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33439862

RESUMO

We investigate aspects of topology in protein folding. For this we numerically simulate the temperature driven folding and unfolding of the slipknotted archaeal virus protein AFV3-109. Due to knottiness the (un)folding is a topological process, it engages the entire backbone in a collective fashion. Accordingly we introduce a topological approach to model the process. Our simulations reveal that the (un)folding of AFV3-109 slipknot proceeds through a folding intermediate that has the topology of a trefoil knot. We observe that the final slipknot causes a slight swelling of the folded AFV3-109 structure. We disclose the relative stability of the strands and helices during both the folding and unfolding processes. We confirm results from previous studies that pointed out that it can be very demanding to simulate the formation of knotty self-entanglement, and we explain how the problems are circumvented: The slipknotted AFV3-109 protein is a very slow folder with a topologically demanding pathway, which needs to be properly accounted for in a simulation description. When we either increase the relative stiffness of bending, or when we decrease the speed of ambient cooling, the rate of slipknot formation rapidly increases.


Assuntos
Acidianus/virologia , Dobramento de Proteína , Proteínas Virais/química , Vírus/química , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica , Temperatura , Termodinâmica
7.
Geobiology ; 19(1): 48-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902110

RESUMO

All life requires energy to drive metabolic reactions such as growth and cell maintenance; therefore, fluctuations in energy availability can alter microbial activity. There is a gap in our knowledge concerning how energy availability affects the growth of extreme chemolithoautotrophs. Toward this end, we investigated the growth of thermoacidophile Acidianus ambivalens during sulfur oxidation under aerobic to microaerophilic conditions. Calorimetry was used to measure enthalpy (ΔHinc ) of microbial activity, and chemical changes in growth media were measured to calculate Gibbs energy change (ΔGinc ) during incubation. In all experiments, Gibbs energy was primarily dissipated through the release of heat, which suggests enthalpy-driven growth. In microaerophilic conditions, growth was significantly more efficient in terms of biomass yield (defined as C-mol biomass per mole sulfur consumed) and resulted in lower ΔGinc and ΔHinc . ΔGinc in oxygen-limited (OL) and oxygen- and CO2 -limited (OCL) microaerophilic growth conditions resulted in averages of -1.44 × 103  kJ/C-mol and -7.56 × 102  kJ/C-mol, respectively, and average ΔHinc values of -1.11 × 105  kJ/C-mol and -4.43 × 104  kJ/C-mol, respectively. High-oxygen experiments resulted in lower biomass yield values, an increase in ΔGinc to -1.71 × 104  kJ/C-mol, and more exothermic ΔHinc values of -4.71 × 105  kJ/C-mol. The observed inefficiency in high-oxygen conditions may suggest larger maintenance energy demands due to oxidative stresses and a preference for growth in microaerophilic environments.


Assuntos
Acidianus , Oxigênio , Acidianus/crescimento & desenvolvimento , Calorimetria , Oxirredução , Termodinâmica
8.
Environ Microbiol ; 23(7): 3568-3584, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32776389

RESUMO

The order Sulfolobales was one of the first named Archaeal lineages, with globally distributed members from terrestrial thermal acid springs (pH < 4; T > 65°C). The Sulfolobales represent broad metabolic capabilities, ranging from lithotrophy, based on inorganic iron and sulfur biotransformations, to autotrophy, to chemoheterotrophy in less acidophilic species. Components of the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle, as well as sulfur oxidation, are nearly universally conserved, although dissimilatory sulfur reduction and disproportionation (Acidianus, Stygiolobus and Sulfurisphaera) and iron oxidation (Acidianus, Metallosphaera, Sulfurisphaera, Sulfuracidifex and Sulfodiicoccus) are limited to fewer lineages. Lithotrophic marker genes appear more often in highly acidophilic lineages. Despite the presence of facultative anaerobes and one confirmed obligate anaerobe, oxidase complexes (fox, sox, dox and a new putative cytochrome bd) are prevalent in many species (even facultative/obligate anaerobes), suggesting a key role for oxygen among the Sulfolobales. The presence of fox genes tracks with a putative antioxidant OsmC family peroxiredoxin, an indicator of oxidative stress derived from mixing reactive metals and oxygen. Extreme acidophily appears to track inversely with heterotrophy but directly with lithotrophy. Recent phylogenetic re-organization efforts are supported by the comparative genomics here, although several changes are proposed, including the expansion of the genus Saccharolobus.


Assuntos
Acidianus , Fontes Termais , Sulfolobaceae , Archaea/genética , Oxirredução , Filogenia , Sulfolobaceae/genética , Sulfolobales
9.
Methods Mol Biol ; 2070: 19-41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31625088

RESUMO

Engineered protein scaffolds have made a tremendous contribution to the panel of affinity tools owing to their favorable biophysical properties that make them useful for many applications. In 2007, our group paved the way for using archaeal Sul7d proteins for the design of artificial affinity ligands, so-called Affitins. For many years, Sac7d and Sso7d have been used as molecular basis to obtain binders for various targets. Recently, we characterized their old gifted protein family and identified Aho7c, originating from Acidianus hospitalis, as the shortest member (60 amino-acids) with impressive stability (96.5 °C, pH 0-12). Here, we describe the construction of Aho7c combinatorial libraries and their use for selection of binders by ribosome display.


Assuntos
Acidianus , Proteínas Arqueais , Engenharia de Proteínas , Ribossomos , Acidianus/química , Acidianus/genética , Proteínas Arqueais/biossíntese , Proteínas Arqueais/química , Proteínas Arqueais/genética , Ribossomos/química , Ribossomos/metabolismo
10.
Ecotoxicol Environ Saf ; 190: 110084, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31869713

RESUMO

Metals in acid mine drainages (AMD) have posed a great threat to environment, and in situ economic environment-friendly remediation technologies need to be developed. Moreover, the effects of acidophiles on biosorption and migrating behaviors of metals in AMD have not been previously reported. In this study, the extremely thermoacidophilic Archaea, Acidianus manzaensis YN25 (A. manzaensis YN25) was used as a bio-adsorbent to adsorb metals (Cu2+, Ni2+, Cd2+ and Zn2+) from acidic solutions which were taken to imitate AMD. The values of their maximum biosorption capacities at both high (1 mM) and low (0.1 mM) metal concentrations followed the order: Cu2+ > Ni2+ > Cd2+ > Zn2+. With the elevations of temperature and pH value, the adsorption amounts of metals increased. The results also indicated that A. manzaensis YN25 had the highest adsorption affinity to Cu2+ in coexisting system of quaternary metals. Acid-base titration data revealed that carboxyl and phosphoryl groups provided adsorption sites for metals via deprotonation. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) further corroborated that amino played an important role in the biosorption process. The fitted Langmuir model illustrated monolayer adsorption occurring on cell surface. The possible adsorption mechanism of A. manzaensis YN25 mainly involved in electrostatic attraction and complexes formation. This study gives a profound insight into the biosorption behavior of heavy metals in acidic solution by thermoacidophilic Archaea and provides a probable novel strategy for in situ remediation of heavy metals pollution in AMD.


Assuntos
Acidianus/fisiologia , Biodegradação Ambiental , Mineração , Poluentes Químicos da Água/metabolismo , Adsorção , Archaea/metabolismo , Íons Pesados , Concentração de Íons de Hidrogênio , Íons , Metais Pesados/análise , Metais Pesados/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
11.
Res Microbiol ; 169(10): 590-597, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30179696

RESUMO

For the first time, synchrotron radiation (SR) -based carbon K-edge X-ray absorption near edge structure (XANES) spectroscopy in-situ characterization was conducted to evaluate the evolution of superficial (about 10 nm) organic components of extracellular polymeric substances (EPS) of thermoacidophilic archaeon Acidianus manzaensis YN-25 acclimated with different energy substrates (FeS2, CuFeS2, S0, FeSO4). The atomic force microscopy (AFM) morphology scanning showed that the strain acclimated with different energy substrates varied a lot in EPS amount. XANES results showed clear associations between the energy substrates and the changes in organic composition in terms of typical function groups (CO, CO and CN). The chalcopyrite- and pyrite-acclimated cells contained higher proportion of proteins but less proportion of polysaccharides than the S0-acclimated cells. The FeSO4-acclimated cells contained the highest proportion of proteins, while the S0-acclimated cells contained more lipids and polysaccharides. The results of linear-combination and peak fitting of the K-edge XANES for the extracellular superficial organic component C is consistent with the trend in comparison with the results of FTIR and spectrophotometric determination, but there are significant differences in the values. These differences are caused by the inconsistencies of measurement depth between XANES and the latter two characterization methods.


Assuntos
Acidianus/citologia , Acidianus/metabolismo , Compostos Ferrosos/metabolismo , Acidianus/química , Acidianus/crescimento & desenvolvimento , Biopolímeros/química , Biopolímeros/metabolismo , Compostos Ferrosos/química , Temperatura Alta , Microscopia de Força Atômica , Espectroscopia por Absorção de Raios X
12.
Environ Microbiol ; 20(7): 2523-2537, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29749696

RESUMO

The thermoacidophilic Acidianus strain DS80 displays versatility in its energy metabolism and can grow autotrophically and heterotrophically with elemental sulfur (S°), ferric iron (Fe3+ ) or oxygen (O2 ) as electron acceptors. Here, we show that autotrophic and heterotrophic growth with S° as the electron acceptor is obligately dependent on hydrogen (H2 ) as electron donor; organic substrates such as acetate can only serve as a carbon source. In contrast, organic substrates such as acetate can serve as electron donor and carbon source for Fe3+ or O2 grown cells. During growth on S° or Fe3+ with H2 as an electron donor, the amount of CO2 assimilated into biomass decreased when cultures were provided with acetate. The addition of CO2 to cultures decreased the amount of acetate mineralized and assimilated and increased cell production in H2 /Fe3+ grown cells but had no effect on H2 /S° grown cells. In acetate/Fe3+ grown cells, the presence of H2 decreased the amount of acetate mineralized as CO2 in cultures compared to those without H2 . These results indicate that electron acceptor availability constrains the variety of carbon sources used by this strain. Addition of H2 to cultures overcomes this limitation and alters heterotrophic metabolism.


Assuntos
Acidianus/metabolismo , Carbono/metabolismo , Elétrons , Ácido Acético/metabolismo , Metabolismo Energético , Hidrogênio/metabolismo , Ferro/metabolismo , Oxidantes , Oxirredução , Oxigênio/metabolismo , Enxofre/metabolismo
13.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625980

RESUMO

The thermoacidophile Acidianus is widely distributed in Yellowstone National Park hot springs that span large gradients in pH (1.60 to 4.84), temperature (42 to 90°C), and mineralogical composition. To characterize the potential role of flexibility in mineral-dependent energy metabolism in contributing to the widespread ecological distribution of this organism, we characterized the spectrum of minerals capable of supporting metabolism and the mechanisms that it uses to access these minerals. The energy metabolism of Acidianus strain DS80 was supported by elemental sulfur (S0), a variety of iron (hydr)oxides, and arsenic sulfide. Strain DS80 reduced, oxidized, and disproportionated S0 Cells growing via S0 reduction and disproportionation did not require direct access to the mineral to reduce it, whereas cells growing via S0 oxidation did require direct access, observations that are attributable to the role of H2S produced by S0 reduction/disproportionation in solubilizing and increasing the bioavailability of S0 Cells growing via iron (hydr)oxide reduction did not require access to the mineral, suggesting that the cells reduce Fe(III) that is being leached by the acidic growth medium. Cells growing via oxidation of arsenic sulfide with Fe(III) did not require access to the mineral to grow. The stoichiometry of reactants to products indicates that cells oxidize soluble As(III) released from oxidation of arsenic sulfide by aqueous Fe(III). Taken together, these observations underscore the importance of feedbacks between abiotic and biotic reactions in influencing the bioavailability of mineral substrates and defining ecological niches capable of supporting microbial metabolism.IMPORTANCE Mineral sources of electron donor and acceptor that support microbial metabolism are abundant in the natural environment. However, the spectrum of minerals capable of supporting a given microbial strain and the mechanisms that are used to access these minerals in support of microbial energy metabolism are often unknown, in particular among thermoacidophiles. Here, we show that the thermoacidophile Acidianus strain DS80 is adapted to use a variety of iron (hydro)oxide minerals, elemental sulfur, and arsenic sulfide to support growth. Cells rely on a complex interplay of abiologically and biologically catalyzed reactions that increase the solubility or bioavailability of minerals, thereby enabling their use in microbial metabolism.


Assuntos
Acidianus/metabolismo , Fontes Termais/microbiologia , Minerais/metabolismo , Acidianus/crescimento & desenvolvimento , Arsenicais/metabolismo , Metabolismo Energético , Ferro/metabolismo , Oxirredução , Sulfetos/metabolismo , Enxofre/metabolismo
14.
BMC Genomics ; 18(1): 445, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587624

RESUMO

BACKGROUND: Several archaeal species from the order Sulfolobales are interesting from the biotechnological point of view due to their biomining capacities. Within this group, the genus Acidianus contains four biomining species (from ten known Acidianus species), but none of these have their genome sequenced. To get insights into the genetic potential and metabolic pathways involved in the biomining activity of this group, we sequenced the genome of Acidianus copahuensis ALE1 strain, a novel thermoacidophilic crenarchaeon (optimum growth: 75 °C, pH 3) isolated from the volcanic geothermal area of Copahue at Neuquén province in Argentina. Previous experimental characterization of A. copahuensis revealed a high biomining potential, exhibited as high oxidation activity of sulfur and sulfur compounds, ferrous iron and sulfide minerals (e.g.: pyrite). This strain is also autotrophic and tolerant to heavy metals, thus, it can grow under adverse conditions for most forms of life with a low nutrient demand, conditions that are commonly found in mining environments. RESULTS: In this work we analyzed the genome of Acidianus copahuensis and describe the genetic pathways involved in biomining processes. We identified the enzymes that are most likely involved in growth on sulfur and ferrous iron oxidation as well as those involved in autotrophic carbon fixation. We also found that A. copahuensis genome gathers different features that are only present in particular lineages or species from the order Sulfolobales, some of which are involved in biomining. We found that although most of its genes (81%) were found in at least one other Sulfolobales species, it is not specifically closer to any particular species (60-70% of proteins shared with each of them). Although almost one fifth of A. copahuensis proteins are not found in any other Sulfolobales species, most of them corresponded to hypothetical proteins from uncharacterized metabolisms. CONCLUSION: In this work we identified the genes responsible for the biomining metabolisms that we have previously observed experimentally. We provide a landscape of the metabolic potentials of this strain in the context of Sulfolobales and propose various pathways and cellular processes not yet fully understood that can use A. copahuensis as an experimental model to further understand the fascinating biology of thermoacidophilic biomining archaea.


Assuntos
Acidianus/genética , Acidianus/metabolismo , Genômica , Mineração , Acidianus/efeitos dos fármacos , Ciclo do Carbono/genética , Ferro/metabolismo , Metais/farmacologia , Oxirredutases/metabolismo , Enxofre/metabolismo , Temperatura
15.
Elife ; 62017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28639939

RESUMO

Biological membranes create compartments, and are usually formed by lipid bilayers. However, in hyperthermophilic archaea that live optimally at temperatures above 80°C the membranes are monolayers which resemble fused bilayers. Many double-stranded DNA viruses which parasitize such hosts, including the filamentous virus AFV1 of Acidianus hospitalis, are enveloped with a lipid-containing membrane. Using cryo-EM, we show that the membrane in AFV1 is a ~2 nm-thick monolayer, approximately half the expected membrane thickness, formed by host membrane-derived lipids which adopt a U-shaped 'horseshoe' conformation. We hypothesize that this unusual viral envelope structure results from the extreme curvature of the viral capsid, as 'horseshoe' lipid conformations favor such curvature and host membrane lipids that permit horseshoe conformations are selectively recruited into the viral envelope. The unusual envelope found in AFV1 also has many implications for biotechnology, since this membrane can survive the most aggressive conditions involving extremes of temperature and pH.


Assuntos
Acidianus/virologia , Vírus de DNA/ultraestrutura , Membranas/ultraestrutura , Microscopia Crioeletrônica
16.
Nat Commun ; 7: 13595, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27882920

RESUMO

Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus two-tailed virus (ATV) forms a high-affinity complex with RNAP by binding inside the DNA-binding channel where it locks the flexible RNAP clamp in one position. This counteracts the formation of transcription pre-initiation complexes in vitro and represses abortive and productive transcription initiation, as well as elongation. Both host and viral promoters are subjected to ORF145 repression. Thus, ORF145 has the properties of a global transcription repressor and its overexpression is toxic for Sulfolobus. On the basis of its properties, we have re-named ORF145 RNAP Inhibitory Protein (RIP).


Assuntos
Acidianus/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Virais/metabolismo , Regiões Promotoras Genéticas , Sulfolobus , Iniciação da Transcrição Genética , Transcrição Gênica
17.
Res Microbiol ; 167(7): 604-12, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27388200

RESUMO

The understanding of biofilm formation by bioleaching microorganisms is of great importance for influencing mineral dissolution rates and to prevent acid mine drainage (AMD). Thermo-acidophilic archaea such as Acidianus, Sulfolobus and Metallosphaera are of special interest due to their ability to perform leaching at high temperatures, thereby enhancing leaching rates. In this work, leaching experiments and visualization by microscopy of cell attachment and biofilm formation patterns of the crenarchaeotes Sulfolobus metallicus DSM 6482(T) and the Acidianus isolates DSM 29038 and DSM 29099 in pure and mixed cultures on sulfur or pyrite were studied. Confocal laser scanning microscopy (CLSM) combined with fluorescent dyes as well as fluorescently labeled lectins were used to visualize different components (e.g. DNA, proteins or glycoconjugates) of the aforementioned species. The data indicate that cell attachment and the subsequently formed biofilms were species- and substrate-dependent. Pyrite leaching experiments coupled with pre-colonization and further inoculation with a second species suggest that both species may negatively influence each other during pyrite leaching with respect to initial attachment and pyrite dissolution rates. In addition, the investigation of binary biofilms on pyrite showed that both species were heterogeneously distributed on pyrite surfaces in the form of individual cells or microcolonies. Physical contact between the two species seems to occur, as revealed by specific lectins able to specifically bind single species within mixed cultures.


Assuntos
Acidianus/fisiologia , Biofilmes/crescimento & desenvolvimento , Microbiologia Ambiental , Interações Microbianas , Sulfolobus/fisiologia , Aderência Bacteriana , Ferro/metabolismo , Microscopia Confocal , Sulfetos/metabolismo , Enxofre/metabolismo
18.
Anal Chem ; 88(14): 7060-7, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27328020

RESUMO

Collision-induced dissociation (CID) is the dominant method for probing intact macromolecular complexes in the gas phase by means of mass spectrometry (MS). The energy obtained from collisional activation is dependent on the charge state of the ion and the pressures and potentials within the instrument: these factors limit CID capability. Activation by infrared (IR) laser radiation offers an attractive alternative as the radiation energy absorbed by the ions is charge-state-independent and the intensity and time scale of activation is controlled by a laser source external to the mass spectrometer. Here we implement and apply IR activation, in different irradiation regimes, to study both soluble and membrane protein assemblies. We show that IR activation using high-intensity pulsed lasers is faster than collisional and radiative cooling and requires much lower energy than continuous IR irradiation. We demonstrate that IR activation is an effective means for studying membrane protein assemblies, and liberate an intact V-type ATPase complex from detergent micelles, a result that cannot be achieved by means of CID using standard collision energies. Notably, we find that IR activation can be sufficiently soft to retain specific lipids bound to the complex. We further demonstrate that, by applying a combination of collisional activation, mass selection, and IR activation of the liberated complex, we can elucidate subunit stoichiometry and the masses of specifically bound lipids in a single MS experiment.


Assuntos
Gases/efeitos da radiação , Espectrometria de Massas/métodos , Proteínas de Membrana/efeitos da radiação , Complexos Multiproteicos/efeitos da radiação , Acidianus/enzimologia , Avidina/química , Avidina/efeitos da radiação , Chaperonina 60/química , Chaperonina 60/efeitos da radiação , Gases/química , Raios Infravermelhos , Proteínas de Membrana/química , Micelas , Complexos Multiproteicos/química , Fosfatidilgliceróis/química , Subunidades Proteicas/química , Subunidades Proteicas/efeitos da radiação , Thermus thermophilus/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/efeitos da radiação
19.
J Virol ; 90(7): 3458-68, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26763997

RESUMO

UNLABELLED: The field of viral metagenomics has expanded our understanding of viral diversity from all three domains of life (Archaea, Bacteria, and Eukarya). Traditionally, viral metagenomic studies provide information about viral gene content but rarely provide knowledge about virion morphology and/or cellular host identity. Here we describe a new virus, Acidianus tailed spindle virus (ATSV), initially identified by bioinformatic analysis of viral metagenomic data sets from a high-temperature (80°C) acidic (pH 2) hot spring located in Yellowstone National Park, followed by more detailed characterization using only environmental samples without dependency on culturing. Characterization included the identification of the large tailed spindle virion morphology, determination of the complete 70.8-kb circular double-stranded DNA (dsDNA) viral genome content, and identification of its cellular host. Annotation of the ATSV genome revealed a potential three-domain gene product containing an N-terminal leucine-rich repeat domain, followed by a likely posttranslation regulatory region consisting of high serine and threonine content, and a C-terminal ESCRT-III domain, suggesting interplay with the host ESCRT system. The host of ATSV, which is most closely related to Acidianus hospitalis, was determined by a combination of analysis of cellular clustered regularly interspaced short palindromic repeat (CRISPR)/Cas loci and dual viral and cellular fluorescence in situ hybridization (viral FISH) analysis of environmental samples and confirmed by culture-based infection studies. This work provides an expanded pathway for the discovery, isolation, and characterization of new viruses using culture-independent approaches and provides a platform for predicting and confirming virus hosts. IMPORTANCE: Virus discovery and characterization have been traditionally accomplished by using culture-based methods. While a valuable approach, it is limited by the availability of culturable hosts. In this research, we report a virus-centered approach to virus discovery and characterization, linking viral metagenomic sequences to a virus particle, its sequenced genome, and its host directly in environmental samples, without using culture-dependent methods. This approach provides a pathway for the discovery, isolation, and characterization of new viruses. While this study used an acidic hot spring environment to characterize a new archaeal virus, Acidianus tailed spindle virus (ATSV), the approach can be generally applied to any environment to expand knowledge of virus diversity in all three domains of life.


Assuntos
Acidianus/virologia , Vírus de Archaea/classificação , Proteínas do Capsídeo/genética , Genoma Viral/genética , Fontes Termais/virologia , Vírus de Archaea/genética , Vírus de Archaea/isolamento & purificação , Sequência de Bases , Mapeamento Cromossômico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Circular/genética , DNA Viral/genética , Temperatura Alta , Hibridização in Situ Fluorescente , Metagenômica , Análise de Sequência de DNA
20.
Biometals ; 29(1): 25-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26645388

RESUMO

While indirect model has been widely accepted in bioleaching, but the evidence of cell surface iron speciation has not been reported. In the present work the iron speciation on the cell surfaces of four typically acidophilic iron-oxidizing microorganism (mesophilic Acidithiobacillus ferrooxidans ATCC 23270, moderately thermophilic Leptospirillum ferriphilum YSK and Sulfobacillus thermosulfidooxidans St, and extremely thermophilic Acidianus manzaensis YN25) grown on different energy substrates (chalcopyrite, pyrite, ferrous sulfate and elemental sulfur (S(0))) were studied in situ firstly by using synchrotron-based micro- X-ray fluorescence analysis and X-ray absorption near-edge structure spectroscopy. Results showed that the cells grown on iron-containing substrates had apparently higher surface iron content than the cells grown on S(0). Both ferrous iron and ferric iron were detected on the cell surface of all tested AIOMs, and the Fe(II)/Fe(III) ratios of the same microorganism were affected by different energy substrates. The iron distribution and bonding state of single cell of A. manzaensis were then studied in situ by scanning transmission soft X-ray microscopy based on dual-energy contrast analysis and stack analysis. Results showed that the iron species distributed evenly on the cell surface and bonded with amino, carboxyl and hydroxyl groups.


Assuntos
Acidianus/metabolismo , Acidithiobacillus/metabolismo , Metabolismo Energético , Ferro/metabolismo , Cobre/metabolismo , Compostos Ferrosos/metabolismo , Sulfetos/metabolismo , Propriedades de Superfície , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...